

DATA COLLECTION

KEY WORDS \& DEFINITIONS

TYPIS OF SAMPLINC

I. Population

I. Simple Random Sampling

Every sample of a specified size has an equal chance of being selected from a sampling frame.
Whole set of items that could be sampled. 2 Systematic Sampling
2 Census
Observations taken from the entire
Items are chosen at regular intervals from a sampling frame.

3. Stratified Sampling

Random samples are taken proportionally from mutually exclusive groups or strata.
4. Quota Sampling
non-random sample is taken to fulfil predetermined quotas for different categories.
5. Opportunity Sampling
population.
5. Sampling Frame

A numbered (or named) list of individual
non-random sample is selected from available sampling units. sampling units.
6. Strata

A subset of the population.

TYPIS OF DATA

I. Quantitative Data

Variables or data associated with a numerical value.
I 2 Qualitative Data
Variables or data associated with a non-numerical I value.
3. Continuous

Variables that can take any value. measured
, 4. Discrete
Variables that can only take specific values. Counted

Census

Includes every member of the population to give a fullu representative set of data

Time consuming \& expensive. Cannot be used when testing process destroys the item being tested.

Sample

Less time consuming to collect and process data. Fewer people needed therefore cheaper to conduct.

May not be fullu representative of population Outliers or whole subgroups possibly excluded.

' WHAT DO I NEED TO KNOW?

I. Advantages \& Disadvantages

Why is one type of sampling more appropriate than another. Consider time, cost, bias, ease, accuracy of population representation.
2. How to work with Grouped Data

Understand inequalities. Find maximum, minimum ε midpoint of each group.
3. How to use the Large Data Set

- Be able to clean data, take samples and comment on findings.

MEASURES OF LOCATION \& SPREAD

KEY WORDS \& DEFINITIONS

```
I. Measure of Location
A single value which describes a position in a data set
2. Measure of Central Tendency
A measure of location which describes the central position in a data set.
3. Measure of Spread or Dispersion
A value which describes how spread out the data is.
4. mean
The sum of all the data divided by how many pieces of data there are. Includes
all pieces of data. Affected by outliers.
5. Median Q2
The middle value when the data values are put in order. Does not include all
pieces of data. not affected by outliers.
6. Mode
The value that occurs most often in the data. Good for non-numerical data.
7. Modal class
The class that has the highest frequency in grouped data
8. Lower Quartile Q।
A measure of location that is one quarter of the way through the data set.
9. Upper Quartile Q3
A measure of location that is three-quarters of the way through the data set
10. Percentile
A measure of location that is the specified percentage of the way through the
data set.
II. Range
The difference between the largest and smallest values in a data set. Affected
by outliers.
12. Inter-quartile Range
The difference between the upper and lower quartiles in a data set. }\mp@subsup{Q}{3}{}-\mp@subsup{Q}{1}{
not affected by outliers.
```


INTERPOLATION

Assume data values are evenly distributed within each class then estimate median or percentile values using proportional reasoning.

Age	$10-19$	$20-29$	$30-39$	17 people \therefore median is $9^{\text {th }}$ person
Frequency	4	8	5	$9^{\text {th }}$ person is in $20-29$ group

19.5
$4^{\text {th }}$ person
$9^{\text {th }}$ person
$12^{\text {th }}$ person

$$
\frac{m-19.5}{29.5-19.5}=\frac{9-4}{12-4}
$$

$\mathrm{m}=25.75$

KEY WORDS \& DEFINITIONS

I. Outlier

Comparing 2 sets of data:

Calculate ε compare the measures of location
Calculate ε compare the measures of spread Compare outliers if applicable
extremities. These are usually calculated as a multiple of the interquartile range above the
mean $\&$ s.d go together
Median $\&$ IQR go together.
upper quartile or below the lower quartile.
i.e. either greater than $Q_{3}+k\left(Q_{3}-Q_{1}\right)$
or less than $Q_{1}-k\left(Q_{3}-Q_{1}\right)$
Ensure all comparisons are done In COnTEXT
2. Cleaning

The process of removing anomalies from the data set.

BOX PLOTS

Box plots are rarely symmetrical
25% of the data lies within each section
Always use the same scale when comparing box plots

Plot points at the upper limits of group boundaries
Ensure it makes sense to extrapolate the curve at the beginning
Be careful of questions that ask "How many are more than..."

HISTOCRAMS

Histograms are used to represent grouped continuous data Area of bar $=k \times$ frequenc y
If $k=1$, then frequency density $=\frac{\text { frequency }}{\text { class width }}$
You may need to find the areas of parts of bars if questions don't use the class boundaries.
Joining the middle of the tops of each bar in a histogram
I forms a frequencu polygon

CORRELATION \& REGRESSION

K[Y WORDS \& DEFINITIONS

I. Correlation A description of the linear relationship between two variables
2. Bivariate data Pairs of values for two variables

3 Causal relationship Where a change in a variable causes a change in another. not always true.
4 Least squares regression line
A tupe of line of best fit which is a straight line in the form $y=a+b x$
$5^{\prime} b^{\prime}$ of a regression line
The gradient of the line; indicating positive correlation if it is positive and negative correlation if it is negative.

6 Independent or Explanatory variable

The variable which occurs regardless of the other variable (eg. time passing). Plotted on the x axis. 7 Dependent or Response variable
The variable whose value depends on the independent variable's data points.
8 Interpolation Estimating a value within the range of the data. Reliable.
9 Extrapolation Estimating a value outside of the range of the data. nOT reliable.
10 Product Moment Correlation Coefficient
A measure of the strength and type of
, correlation.

Perfect positive correlation	Strong positive correlation	Weak positive correlation	no correlation	Weak negative correlation	Strong negative correlation	Perfect negative correlation
$0^{\circ 0^{\circ}}$						
$r=1$	$r=0.8$	$r=0.3$	$r=0$	$r=-0.3$	$r=-0.8$	$r=-1$

WHAT DO I NEED TO KNOW

K[Y WORDS \& DEFINITIONS

I. Experiment A repeatable process that results in a number of outcomes.
2. Event A collection of one or more outcomes.
3. Sample Space The set of all possible outcomes. ξ is the universal set.
4. Mutually Exclusive Events that have no outcomes in common.
5. Independent When events have no effect on another
6. Intersection When two or more events all happen.
7. Union When one or both events happen.
8. Complement When an event does not happen. I

TREE DIACRAMS

You can use tree diagrams to show the outcome of

- Add all the favourable final probabilities.

VENN DIACRAMS

Venn diagrams can be used to show either probabilities or the number of outcomes. $n(A)$ is the number of outcomes while $P(A)$ is the probability of an outcome e.g. $n($ Aces $)=4 \quad P($ Ace $)=4 / 52$

Use cross hatch shading to help you work out probabilities.
Focus on one condition at a time, ignoring the other condition completely when you shade.

If $P(A)=/ /$ and $P(B)=\backslash \backslash$
$P(A \cap B)=\#$
$P(A \cup B)=/ /+\backslash \backslash+\#$

STATISTICAL DISTRIBUTIONS

K[Y WORDS \& DEFINITIONS

I Random variable A variable whose outcome depends on a random event.
2 Sample space The range of values a variable can take.
3 Discrete variable A variable that can only take specific values.
4 Probability Distribution A full description of the probability of all possible outcomes in a sample space. 5 Uniform distribution When the probabilities in a distribution are all equal
6 Binomial Distribution A distribution where the random variable, X, represents the number of successful trials in an experiment.
7 Cumulative probability distribution The sum of
: probabilities up to and including the given value.

,' BINOMIAL DISTRIBUTION
(Conditions for a binomial distribution B(n, p)

- Onlu two possible outcomes (success/failure)
- Fixed number of trials, n
- Fixed probability of success, p
- Trials are independent of each other

Probability mass function of a Binomial distribution

$$
p(\mathrm{X}=r)=\binom{n}{r} p^{r}(1-p)^{n-r}
$$

Binomial Cumulative Probability Function
The sum of all the individual probabilities up to and including the given value of x in the calculation for $P(X \leq x)$

These values can be found in the tables or on a calculator.

WHAT DO I NEED TO KNOW

${ }_{1}$ Probabilities of all possible outcomes add to 1 ${ }_{1}^{1} \Sigma P(X=x)=1$ for all x
${ }_{1}$ Probability distributions can be described in ', different ways. Eg. if $X=$ the score when a fair die is rolled
Table:

X	1	2	3	4	5	6
$P(X=x)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Probability Mass Function:
$P(X=x)= \begin{cases}\frac{1}{6}, & x=1,2,3,4,5,6 \\ 0 & \text { otherwise }\end{cases}$
Diagram:
${ }_{1}^{1} P(X=x)$

CALCULATORS FOR BINOMIAL

Casio fx-991EX:
Menu 7 - Binomial CD or Binomial PD

Casio CG50:
Menu 2 - F5 Dist - F5 Binomial - Bpd or Bcd

HYPOTHESIS TESTING

KIY WORDS \& DEFINITIONS

I Hypothesis Test

A process that considers the probability of an observed (or calculated) value occurring.

2 null Hupothesis, Ho

The hypothesis about the parameter that is assumed to be correct.
3 Alternative Hypothesis, H_{1}
The hypothesis about the parameter if the assumption is not correct. 4 Test Statistic
The result of an experiment, or the value calculated from a sample. 5 One-tailed Test
A hypothesis test that involves the alternative hypothesis describing the parameter as being less than or greater than the null hypothesis value

6 Two-tailed test

A hupothesis test that involves the alternative hypothesis describing the parameter as taking any value that is not the null hypothesis value. 7 Critical Region
The region of the probability distribution where the test statistic value would result in the null hupothesis being rejected

8 Critical value

The first value of the test statistic that could fall in the critical region.

9 Significance Level

The total probability of incorrectly rejecting the null hypothesis.

WHAT DO I NELD TO KNOW

To carry out a Hypothesis Test, assume Ho is true, then consider how likely the observed value of the test statistic was to occur. Remember we need it to be even more unlikely than the significance level in order to be 'significant' and to reject H_{0}.

If the test is two-tailed there are two critical regions, one at each end of the distribution. We therefore need to halve the significance level at the end we are testing.

If the test statistic is $X \sim B(n, p)$ then the expected outcome is $n p$
If the observed value lies in critical region we say there is sufficient evidence to reject H_{0} and conclude that H_{1} is correct.

If observed value is not in critical region we say there is insufficient evidence to reject H_{0}.

ALWAYS add a final line in your conclusion in the context of the question
Beware of questions that say 'The probability in the tail should be as close as possible to the significance level'. In these cases we may choose a value that is actually slightly more likely than the significance level.

The normal Distribution

A continuous probability distribution that can be used I to model variables that are more likely to be grouped I around a central value than at extremities.

THE NORMAL DISTRIBUTION CURVE

symmetrically bell-shaped, with asymptotes at each end 68% percent of data is within one s.d of μ 95% percent of data is within two s.d of μ 99.7% percent of data is within three s.d of μ

THE NORMAL DISTRIBUTION TABLE

To find z-values that correspond to given probabilities, ie. P(Z > z) = p use this table:

p	z	p	z
0.5000	0.0000	0.0500	1.6449
0.4000	0.2533	0.0250	1.9600
0.3000	0.5244	0.0100	2.3263
0.2000	0.8416	0.0050	2.5758
0.1500	1.0364	0.0010	3.0902
0.1000	1.2816	0.0005	3.2905

CALCULATORS FOR NORMAL DISTRIBUTION

 Casio fx-99IEXmenu 7 - Mormal PD, normal CD or Inverse normal

Casio CG50:

Menu 2 - F5 Dist - FI normal - Mpd, ncd or Invn
Choose extremely large or small values for upper , or lower limits as appropriate

1. The area under a continuous probability distribution curve $=1$

2 If X is a normally distributed random variable, with population mean, μ, and population variance, σ^{2} we say $X \sim n\left(\mu, \sigma^{2}\right)$
3. To find an unknown value that is a limit for a given probability value, use the inverse normal distribution function on the calculator.
4. The notation of the standard normal variable Z is $Z \sim n\left(0,1^{2}\right)$
5. The formula to standardise X is $Z=\frac{x-\mu}{\sigma}$
6. The notation for the probability $\mathrm{P}(\mathrm{Z}<\mathrm{a})$ is $\phi(\mathrm{a})$
7. To find an unknown mean or standard deviation use coding and the standard normal variable, Z.
8. Conditions for a Binomial distribution to be approximated by a Mormal distribution:
n must be large
p must be close to 0.5
9. The mean calculated from an approximated Binomial distribution is $\mu=n p$
10. The variance calculated from an approximated Binomial distribution is $\sigma^{2}=n p(1-p)$
II. Apply a continuity correction when calculating probabilities from an approximated Binomial distribution using limits so that the integers are completely included or excluded, as required

12 The mean of a sample from normally distributed population, is distributed as

$$
\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right) \text { then } Z=\frac{X-\mu}{\frac{\sigma}{\sqrt{n}}}
$$

13. Skewed data is nOT 'normal'
